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Families and clustering in a natural numbers network

Gilberto Corso
International Center for Complex Systems and Departamento de Biofı´sica, Centro de Biocieˆncias, Universidade Federal do Rio Grande

do Norte, Campus Universita´rio, 59072 970 Natal, RN, Brazil
~Received 8 September 2003; revised manuscript received 24 November 2003; published 18 March 2004!

We develop a network in which the natural numbers are the vertices. The decomposition of natural numbers
by prime numbers is used to establish the connections. We perform data collapse and show that the degree
distribution of these networks scales linearly with the number of vertices. We explore the families of vertices
in connection with prime numbers decomposition. We compare the average distance of the network and the
clustering coefficient with the distance and clustering coefficient of the corresponding random graph. In case
we set connections among vertices each time the numbers share a common prime number the network has
properties similar to a random graph. If the criterion for establishing links becomes more selective, only prime
numbers greater thanpl are used to establish links, where the network has high clustering coefficient.
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I. INTRODUCTION

The new century has started with a strong developmen
network theory and specially in small-world networks. Thr
ingredients are necessary to define a small-world networ
sparse network, small distance, and high clustering co
cient@1,2#. Many examples of these networks have been a
lyzed in diverse fields as computation@3,4#, linguistic @5,6#,
biology @7,8#, economics @9,10#, and social phenomen
@11,12#. In addition to the interest in the description of the
particular phenomena, small-world networks are promis
elements to compose a general theory of complex syste

Nowadays the two major research lines in networks
the search for small-world networks in nature and the inv
tigation of theoretic models that explain the properties
such networks. The first line was pointed out in the fi
paragraph. The second line is dominated by the evolv
network models@13,14# and the study of phase order trans
tions in networks@15,16#. This work is situated at an inter
mediary place between both lines. We characterize a netw
using recent techniques of statistical physics but instea
looking for real data in the world we construct a netwo
using some properties of the set of natural numbers.

We use as the keystone in the construction of num
networks the fundamental theorem of number theory wh
says that each natural number has a unique decompositi
prime factors. It means, for a numbera and prime numbers
pj , there is a unique product

a5p1
a1p2

a2
•••pm

am, ~1!

where the exponenta j is the multiplicity of the primepj .
The simplest way to define a link between two vertic
~numbers! is the following: each time two numbers have
prime in common in Eq.~1! they have a connection. We sha
see that only this criterion is not good enough to constr
networks with small clustering coefficient.

This paper has a twofold objective: present a netw
model based on number properties and characterize this
work using the approach of modern complex network ana
ses. In Sec. II we show the modelM and its extensionsMl ,
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and we drive our attention to the degree distribution of
network, the set of families, and the search of invariant qu
tities. In Sec. III we analyze the distance and the cluster
coefficient for these networks. In Sec. IV we give our fin
remarks.

II. THE MODEL

In this section we present the standard modelM and its
extensionsMl . We use the set of natural numbers as vertic
and an arithmetic property establishes the connections.
connections have neither weight nor direction.

A. The basic modelM

In modelM the criterion for the existence of a connectio
between two vertices is the following: there is a link betwe
two numbersa and b if they share a common divisor. In
other words, ifa andb have a common prime numberpj in
decomposition~1! a link is established.

Figure 1 shows a simple realization of this rule for num
ber of verticesN516. All the even numbers are intercon
nected~they share the primep52). Besides the divisors o
3, 5, etc., are also interconnected. The most connected n
bers for thisN are 6 and 12 because they are linked to all

FIG. 1. The network of the modelM for number of verticesN
516. The natural numbers are connected according to the p
number decomposition. Two numbers have a connection if t
share a common prime in the decomposition.
©2004 The American Physical Society06-1
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even numbers and all the multiples of 3.
The first point we explore in the networkM is the degree

distribution; it means the connectivityk of the vertexi for
vertices ordered according to the connectivity. Figure 2 d
playsk versusi. In this figure we haveN521254096 verti-
ces. The vertexi with maximum number of links isi
5231052333537311 which is connected with all the
even numbers and with the multiples of 3, 5, 7, and 11.
general, the most connected vertex in a networkM of N
vertices corresponds to the maximum numberi
5p1p2•••pm<N where thepj correspond to the first prime
~which are the most connected numbers!. In the opposite side
of the graphic there are the prime numberspj that havek
50; these numbers satisfy the relation 2pj<N ~if pj do not
fulfill this relation it will be connected to the node 2 and
would not havek50). The general view of the degree di
tribution shown in Fig. 2 is the following. Half of the verti
ces, which correspond to the even numbers, are conne
among themselves, so they havek>N/2. Otherwise, most of
odd numbers havek,N/2 because they are, in general, n
connected to all even numbers. The frontier between th
two sets is indicated by the large plateau that starts roug
at i 5N/2.

The plateau in the middle of Fig. 2 corresponds to
family of multiples of the number 2. In the beginning of th
plateau we find the numbers 2a for 1<a<125 log2N. These
numbers are connected with all the even numbers and
with them. For these numbersk5N/2. The smooth tail that
comes fori ,N/2 is formed by the numbers of type 2apj
<N wherepj is a weak connected prime. These numbers
connected with all the even numbers and with the conn
tions of pj that are just a few.

The second largest plateau is related to the multiples
~indicatedF3 in Fig. 2!. One-third of theN natural numbers
are multiples of 3 and have connectivity larger than all
other odd numbers. In the beginning of this plateau we fi
the numbers of the form 3b where 1<b< log3N. This pla-
teau is smaller than the former one because there are
multiples of 3 than 2. For these numbersk5N/3; it means
they are connected only with the multiples of 3. The tail

FIG. 2. The connectivityk vs indexi for the data of network of
modelM. It is usedN54096. The main familiesFk are indicated in
the figure.
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this plateau is formed by the numbers 3bpj<N, for pj
weakly connected. There are also plateaus visible in Fig
corresponding to the primes 5, 7 and 11. For these plate
we have in the coordinate axisk5N/5, N/7, andN/11, re-
spectively.

Another plateau indicated in the figure is formed by t
numbers that share the two primes 2 and 3; it means
numbers that are multiples of 6. This plateau starts w
numbers of the form 2a3b<N. If the network were
weighted,k of this plateau would be the sum ofk of 2 and 3
plateaus. As the network does not count multiple links
corresponding value ofk is smaller than the cited sum. W
call F2 the even plateau,F10 the plateau generated by th
numbers that are divisible only by 2 and 5, and so on. T
most important family plateausF2 , F3 , F5 , F7 , F10, F14,
andF15 are indicated in Fig. 2.

Figure 2 shows two distinct regions. Abovei 5N/2 the
degree distribution is dominated mainly by plateaus of pri
numbers of the formpj

a j and their respective tails. Below thi
number there are only plateaus composed by the comb
tion of prime numbers of the formpj

a j pm
am and their tails. In

fact in the limit of N→` an infinite number of plateau
would appear in the curve whose relative sizes are de
mined by Eq.~1!. We conjecture that in this limit a fracta
distribution will appear.

We havek5N/2 for the beginning of the plateauF2, and
in generalk5N/pk for the families of primesFk . This rela-
tion suggests an interesting scale property: the degree s
linearly with N. We verify numerically this fact in Fig. 3
where we plot the normalized connectivity (k/N) versus the
normalized index (i /N) for N5128,512, and 2048. This fig
ure verifies by simulation that the connectivity of the mod
M scales linearly with the number of vertices.

B. The extensionM l of the model M

In the standard number decomposition, Eq.~1!, there is
the possibility of including, or not, the factor 1 because
the numbers are trivially divisible by unity. If the number
is included in the decomposition all the numbers would sh

FIG. 3. The normalized connectivityk/N vs normalized index
i /N for data of modelM. It is usedN5128, 512, and 2048, as
indicated in the figure.
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the same common divisor and, as a consequence, the
work will become trivial: all the vertices will be intercon
nected. In the same way as we excluded the number 1
divisor in the criterion for establishing links, we could als
exclude the number 2. This idea suggests an alternative
cedure to define a network model for natural numbers.

The network modelM pl
is the following. The vertices are

again the natural numbers and the connections are set u
Eq. ~1!, but we take into account only connections of prim
pj>pl . In this sense the former modelM is in fact M2
because the links are established once there is a com
factor pj such thatpj>2. In this way, the networkM3 takes
into account the primespj53,5, . . . toestablish links, but
not the prime 2.

Figure 4 shows the degree distribution (k versusi in order
of decreasing connectivity! for M2 , M3 , M5, and M7 as
indicated in the figure. We use in the figureN5211. The
curve ofM2 is the same curve shown in Fig. 2. The curve
M3 is similar to M2, but the largest even plateauF2 is ab-
sent. The largest plateau ofM3 starts ati 5N/3, because all
the one-third of the most connected numbers are multiple
3. We observe that the largest plateau ofM3 has the samek
of F3 of networkM2; in fact in both cases the plateaus a
formed by theF3 family. The curveM5 does not show the
plateaus corresponding to the familiesF2 and F3 as ex-
pected; and in this case the largest plateau is formed by
F5 family. The curve ofM7 follows the same tendency. As
general trend the curves of degree distribution ofMl become
smoother for increasingl because they have less connectio
related to important prime numbers and, as a conseque
they present less plateaus. The criterion for establishing l
in the modelMl becomes more restrictive asl increases be-
cause the number of connections decreases. It is intere
that the average connectivitŷk&52n/N normalized byN
tends to a constant asN→` (n is the number of connection
in the network!. In Table I we shoŵ k&/N for the networks
Ml .

The first conclusion we take from the table is that t
modelM is not sparse; it means the network does not fu
the condition^k&!N. Therefore we have to be cautious

FIG. 4. The connectivityk vs indexi for the modelsM2 , M3 ,
M5, andM7 as indicated in the figure. It is usedN52048.
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compare properties of such graphs with usual comp
graphs in the physics literature. The reason for^k&}N is
rooted in the way connections are established in the netw
Each time a new even number is added it is connected w
at least,N/2 vertices, and a multiple of 3 withN/3 vertices.
This fact illustrates that in the average^k& increases linearly
with N.

We also analyze the scaling properties of the modelMl .
Figure 5 shows the normalized connectivity (k/N) versus the
normalized index (i /N) for the modelM5. This curve is
similar to the one of Fig. 3; here we also useN5128,512 and
2048. The data collapse performed in the figure indica
that the networkM5 scales withN. In fact, this same ten-
dency is observed for all networksMl analyzed. This behav
ior is related, as before, with the plateaus of prime numb
pj whose connectivity scales withN. The fact that the degree
distribution of the networksMl scales withN suggests the
existence of magnitudes that are independent ofN. This is
the case of̂ k&/N and this is also the case of the clusteri
coefficient as we shall see in the following section.

III. CLUSTERING COEFFICIENT AND NETWORK
DISTANCE

In this section we characterize the network modelsMl

using the distanced and the clustering coefficientC. One of
our objectives in this work is to differentiateMl from ran-
dom networks; it means networks whose distribution of lin

TABLE I. ^k&/N and C̄ for the network number modelsM2 ,
M3 , M5, andM7.

Ml M2 M3 M5 M7

^k&/N 0.45 0.20 0.09 0.05

C̄ 1.78 3.65 8.22 14.5

FIG. 5. The normalized connectivityk/N vs normalized index
i /N for the data of modelM5. It is usedN5128, 512, and 2048 as
indicated in the figure.
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among vertices follow a Poisson distribution. Therefore
compared andC of Ml with d andC of the random network
associated; it means the random network with the same n
ber of vertices and connections.

The distance of a network is defined as the average
tance between all the two vertices of the network. The cl
tering coefficient is a global parameterC5(Nci /N which is
based on the local clustering coefficientci . For each vertexi
the respectiveci is defined as the normalized number of co
nection among its first neighbors. The parameterC measures
the average interconnection of the network. Using the
ample of social networks of acquaintances,ci measures how
much the friends of a person~vertex i ) are friends among
them. For a major treatment on this topic see Ref.@2#.

The distance of the random network associated,drand , is
estimated by simulation. We note that, because the grap
not sparse, it is not valid thatd} ln(N). In fact, for non-sparse
graphs the distance is almost always 2@17#. Otherwise, the
clustering coefficient of the random graph associated,Crand ,
is analytically estimated@2# and depends only on the numb
of verticesN and the number of connectionsn. For the ran-
dom graph the clustering coefficient isCrand5^k&/N. We
call d̄[d/drand andC̄[C/Crand as the normalized distanc
and clustering coefficient.

Figure 6 shows the distanced against the network sizeN
for the data of the modelsM2 , M3 , M5, and M7. The
graphic is in log-linear form because of the large inter
used in N. The data confirm the prevision for nonspar
graphs that the distance is around 2. We estimated̄ for the
networksM2 , M3 , M5, and M7 in the range 25<N<212

and find that 0.5,d̄,0.9. The general tendency is thatd̄
slowly increases withN. In addition, l large in modelsMl

implies smallerd̄. This last fact is expected since for largel
the connections of the network are more selective and o
nized.

The analysis ofC̄ for M2 , M3 , M5, andM7 shows that it
increases withN until N.26 and stabilizes around a consta
value. In Table IIC̄ for severalN for the modelM5 is shown;
the other modelsMl follow a similar trend.

FIG. 6. The distanced against network sizeN, for the models
M2 , M3 , M5, andM7 as indicated in the figure.
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The data point to a constantC̄ in the limit N→`. The

size invariance ofC̄ is compatible with the size invariance o

the degree distribution. The best values ofC̄ for M2 , M3 ,
M5, andM7 are shown in Table I. We observe in this tab

that C̄ for the networkMl increases withl. The clustering
coefficient increases as the criterion for establishing conn
tions in the network becomes more selective. In fact, fo
constantN, the number of connectionn in the Ml model
decreases for highl ~see Table I!. As a resultCrand5^k&/N
52n/N2 decreases in contrast with estimatedC that remains
almost constant.

IV. FINAL REMARKS

In this work we propose a network model in which th
natural numbers are the vertices and the connections
based on their decomposition by prime numbers. Using
criterion we develop a nonsparse network (^k&;!N) which
has a distance of the order of 2. If we consider that all
prime numbers in the decomposition set a link the netw
formed is similar to a random graph because the high nu
ber of connections implies a small clustering coefficient.
the criterion for establishing links becomes more selecti
only prime numbers greater than 3, or 5, are used to es
lish links where the network has a large clustering coe
cient.

We perform data collapse on the data and verify that
networks studied have a degree distribution that is invar
with the number of verticesN. The general view of the de
gree distribution is a funny discontinuous curve with p
teaus of all sizes. These plateaus are generated by the f
lies of numbers that share the same prime numbers in t
decomposition.

An important class of networks are the scale-free on
This concept is mainly used to distinguish between netwo
that have exponential and power-law degree distributions
the exponential case most of the vertices have a typical c
nectivity inside a range defined by the exponent of the ex
nential function. On the one side, a power-law case has c
nections of all orders; it does not have a set of vertices w
a typical connectivity. The number networkMl does not
have a smooth degree distribution because of the plate
formed by the families of prime numbersFk , therefore it is
not possible to fit the degree by a smooth curve. On the o
side, due to familiesFk , this network has vertices with al
orders of connectivity corresponding to all sizes of prim
and their combinations. In this broad sense the networkMl
can be called a scale-free network.

This work unfolds an alternative perspective in the stu
of complex networks. Instead of search for real networks

TABLE II. C̄ for several network sizesN for the modelM5.

N 32 64 128 256 512 1024

C̄ 6.95 8.33 8.18 8.19 8.28 8.36
6-4
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nature we explore deterministic mathematical networks
show small distance and high clustering coefficient. Des
the present network is non being sparse it is a promis
laboratory in the study of degree distribution and clus
families. In a future work we intend to explore some the
retical developments of this problem: an evolving netwo
algorithm for Ml and an analysis of phase transition in th
model.
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