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Families and clustering in a natural numbers network
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We develop a network in which the natural numbers are the vertices. The decomposition of natural numbers
by prime numbers is used to establish the connections. We perform data collapse and show that the degree
distribution of these networks scales linearly with the number of vertices. We explore the families of vertices
in connection with prime numbers decomposition. We compare the average distance of the network and the
clustering coefficient with the distance and clustering coefficient of the corresponding random graph. In case
we set connections among vertices each time the numbers share a common prime number the network has
properties similar to a random graph. If the criterion for establishing links becomes more selective, only prime
numbers greater thgnm are used to establish links, where the network has high clustering coefficient.
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[. INTRODUCTION and we drive our attention to the degree distribution of the
network, the set of families, and the search of invariant quan-
The new century has started with a strong development itities. In Sec. Il we analyze the distance and the clustering
network theory and specially in small-world networks. Threecoefficient for these networks. In Sec. IV we give our final
ingredients are necessary to define a small-world network: eemarks.
sparse network, small distance, and high clustering coeffi-
cient[1,2]. Many examples of these networks have been ana- Il. THE MODEL
lyzed in diverse fields as computati¢®,4], linguistic [5,6],

biology [7,8], economics[9,10, and social phenomena In this section we present the standard maddeand its_
[11,12). In addition to the interest in the description of these€Xte€nsionsvl, . We use the set of natural numbers as vertices

particular phenomena, small-world networks are promising?d an arithmetic property establishes the connections. The
elements to compose a general theory of complex systemsSonnections have neither weight nor direction.

Nowadays the two major research lines in networks are
the search for small-world networks in nature and the inves- A. The basic modelM

tigation of theoretic models that explain the properties of |y modelM the criterion for the existence of a connection
such networks. The first line was pointed out in the firSthetween two vertices is the following: there is a link between
paragraph. The second line is dominated by the evolving,o numbersa and b if they share a common divisor. In
network modelg 13,14 and the study of phase order transi- oiner words, ifa andb have a common prime numbp in

tions in networkg15,16. This work is situated at an inter- decomposition(1) a link is established.

mediary place between both lines. We characterize a network Figure 1 shows a simple realization of this rule for num-
using recent techniques of statistical physics but instead qfg, of verticesN=16. All the even numbers are intercon-
quking for real datg in the world we construct a network nected(they share the primp=2). Besides the divisors of
using some properties of the set of natural numbers. 3, 5, etc., are also interconnected. The most connected num-

We use as the keystone in the construction of numbepe s for thisN are 6 and 12 because they are linked to all the
networks the fundamental theorem of number theory which

says that each natural number has a unique decomposition in
prime factors. It means, for a numbarand prime numbers
pj, there is a unique product

a= pi’lpg& . .pﬁm' (1)

where the exponent; is the multiplicity of the primep; .

The simplest way to define a link between two vertices
(numbers is the following: each time two numbers have a
prime in common in Eq(l) they have a connection. We shall
see that only this criterion is not good enough to construct
networks with small clustering coefficient.

This paper has a twofold objective: present a network F|G. 1. The network of the moddll for number of verticedN
model based on number properties and characterize this net-16. The natural numbers are connected according to the prime
work using the approach of modern complex network analynumber decomposition. Two numbers have a connection if they
ses. In Sec. Il we show the moddl and its extensionM, , share a common prime in the decomposition.
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FIG. 2. The connectivitk vs indexi for the data of network of ~ FIG. 3. The normalized connectivity/N vs normalized index
modelM. It is usedN=4096. The main familie&, are indicated in  i/N for data of modelM. It is usedN=128, 512, and 2048, as
the figure. indicated in the figure.
even numbers and all the multiples of 3. this plateau is formed by the numberf@sN, for p;

The first point we explore in the netwoM is the degree weakly connected. There are also plateaus visible in Fig. 2
distribution; it means the connectivity of the vertexi for  corresponding to the primes 5, 7 and 11. For these plateaus
vertices ordered according to the connectivity. Figure 2 diswe have in the coordinate axis=N/5, N/7, andN/11, re-
playsk versusi. In this figure we havé\=2'2=4096 verti-  spectively.
ces. The vertexi with maximum number of links is Another plateau indicated in the figure is formed by the
=2310=2X3X5Xx7x11 which is connected with all the numbers that share the two primes 2 and 3; it means the
even numbers and with the multiples of 3, 5, 7, and 11. Imumbers that are multiples of 6. This plateau starts with
general, the most connected vertex in a netwbtkof N numbers of the form 23<N. If the network were
vertices corresponds to the maximum numbeér weightedk of this plateau would be the sum kbf 2 and 3
=p1P2- - - Pm=N where thep; correspond to the first primes plateaus. As the network does not count multiple links the
(which are the most connected numbenhs the opposite side corresponding value df is smaller than the cited sum. We
of the graphic there are the prime numbersthat havek  call F, the even plateaur;, the plateau generated by the
=0; these numbers satisfy the relatiop;&N (if p; do not  numbers that are divisible only by 2 and 5, and so on. The
fulfill this relation it will be connected to the node 2 and it most important family plateaus,, Fs, Fs, F7, F1g, F1a4,
would not havek=0). The general view of the degree dis- andF 5 are indicated in Fig. 2.
tribution shown in Fig. 2 is the following. Half of the verti- Figure 2 shows two distinct regions. AboveN/2 the
ces, which correspond to the even numbers, are connectelkgree distribution is dominated mainly by plateaus of prime
among themselves, so they hawe N/2. Otherwise, most of numbers of the fornpj“i and their respective tails. Below this
odd numbers have<N/2 because they are, in general, not number there are only plateaus composed by the combina-
connected to all even numbers. The frontier between thesg,, o prime numbers of the formjajp:qm and their tails. In

two sets is indicated by the large plateau that starts roughlyalct in the limit of N—c an infinite number of plateaus

ati=N/2. would appear in the curve whose relative sizes are deter-
The plateau in the middle of Fig. 2 corresponds to the bp

family of multiples of the number 2. In the beginning of this g;rtlﬁguz)c/mE\(,qv.i(lll;p\é)vtga:‘:onjecture that in this fimit a fractal
plateau we find the number$ 2or 1<a<12=Ilog,N. These We havek=N/2 for the beginning of the platedt,, and
numbers are connected with all the even numbers and onli)ﬁ '

; . generalk=N/p, for the families of primed-, . This rela-
with them. For these numbeks=N/2. The smooth tail that : : ;
comes fori<N/2 is formed by the numbers of type'g, tion suggests an interesting scale property: the degree scales

<N wh . K ted ori Th b linearly with N. We verify numerically this fact in Fig. 3
=N Wherep; IS a weak connected prime. 1h€se NUMDErS arg, oo \ye plot the normalized connectiviti/ ) versus the
connected with all the even numbers and with the connecy ..~ o indexi¢N) for N= 128,512, and 2048. This fig-

t|or_:_shof Pj thaé ?re Ju‘? "’II ftew. is related to th itiol f re verifies by simulation that the connectivity of the model
€ second largest piateau 1S refated to the mulliples o scales linearly with the number of vertices.

(indicatedF 3 in Fig. 2). One-third of theN natural numbers
are multiples of 3 and have connectivity larger than all the
other odd numbers. In the beginning of this plateau we find
the numbers of the formAwhere 1< B<Ilog;N. This pla- In the standard number decomposition, ELj, there is
teau is smaller than the former one because there are lefise possibility of including, or not, the factor 1 because all
multiples of 3 than 2. For these numbdes N/3; it means the numbers are trivially divisible by unity. If the number 1
they are connected only with the multiples of 3. The tail ofis included in the decomposition all the numbers would share

B. The extensionM, of the modelM
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2048 y T T T y T ' TABLE I. (k)/N and C for the network number models!,,
M3z, Mg, andM».

i M, M, M Ms M,
(K)IN 0.45 0.20 0.09 0.05
c 1.78 3.65 8.22 14.5

compare properties of such graphs with usual complex
graphs in the physics literature. The reason {kyoN is

rooted in the way connections are established in the network.
Each time a new even number is added it is connected with,

0 512 1054 1536 2048 at least,N/2 vertices, and a multiple of 3 witN/3 vertices.
This fact illustrates that in the averadie) increases linearly
with N.

FIG. 4. The connectivitk vs indexi for the modelsM,, M3, . .
Mg, andM as indicated in the figure. It is usé¢=2048. We also analyze the scaling properties of the madel

Figure 5 shows the normalized connectivily/I{) versus the

the same common divisor and, as a consequence, the n&ormalized index i(N) for the modelMs. This curve is
work will become trivial: all the vertices will be intercon- Similar to the one of Fig. 3; here we also u$e-128,512 and
nected. In the same way as we excluded the number 1 as2948. The data collapse performed in the figure indicates
divisor in the criterion for establishing links, we could also that the networkMs scales withN. In fact, this same ten-
exclude the number 2. This idea suggests an alternative prolency is observed for all networkg, analyzed. This behav-
cedure to define a network model for natural numbers. ior is related, as before, with the plateaus of prime numbers
The network modeM D is the following. The vertices are p; whose connectivity scales witih. The fact that the degree

again the natural numbers and the connections are set usiféstribution of the networkd, scales withN suggests the
Eg. (1), but we take into account only connections of primesexistence of magnitudes that are independeni.oThis is
p;=p;. In this sense the former mod#l is in fact M,  the case ofk)/N and this is also the case of the clustering
because the links are established once there is a commaoefficient as we shall see in the following section.
factorp; such thatp;=2. In this way, the networl ; takes
into account the primep;=3,5, . .. toestablish links, but
not the prime 2.

Figure 4 shows the degree distributidnersusi in order
of decreasing connectivityfor M,, M3, M5, and M, as
indicated in the figure. We use in the figuhe=2"" The In this section we characterize the network models
curve ofM, is the same curve shown in Fig. 2. The curve ofusing the distancd and the clustering coefficiei@. One of
Mg is similar toM,, but the largest even plate#y is ab-  our objectives in this work is to differentiaté; from ran-
sent. The largest plateau bf; starts ati = N/3, because all dom networks; it means networks whose distribution of links
the one-third of the most connected numbers are multiples of
3. We observe that the largest plateauvbf has the samk& 05
of F5 of networkM,; in fact in both cases the plateaus are
formed by theF g family. The curveMs does not show the
plateaus corresponding to the famili€s and F; as ex- 0.4
pected; and in this case the largest plateau is formed by th
F5 family. The curve ofM; follows the same tendency. As a
general trend the curves of degree distributiofMgfbecome
smoother for increasingbecause they have less connections
related to important prime numbers and, as a consequenct 02
they present less plateaus. The criterion for establishing links
in the modelM | becomes more restrictive asncreases be-
cause the number of connections decreases. It is interestin
that the average connectivik)=2n/N normalized byN
tends to a constant &— (n is the number of connections o
in the network. In Table | we showk)/N for the networks

The first conclusion we take from the table is that the FIG. 5. The normalized connectivity/N vs normalized index
modelM is not sparse; it means the network does not fulfilli/N for the data of modeMs. It is usedN=128, 512, and 2048 as
the condition{k)<N. Therefore we have to be cautious to indicated in the figure.

Ill. CLUSTERING COEFFICIENT AND NETWORK
DISTANCE

0.3

k/N

0.1
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2 T T TABLE Il. C for several network sizeN for the modelM 5-
N 32 64 128 256 512 1024
C 6.95 8.33 8.18 8.19 8.28 8.36
Ir ’ ;-r ‘ T The data point to a constafi in the limit N—o. The
" 1 size invariance o€ is compatible with the size invariance of
o5k A M2 | the degree distribution. The best values®for M,, M,
- N M3z, andM- are shown in Table I. We observe in this table
- that C for the networkM, increases with. The clustering
0 ! L I coefficient increases as the criterion for establishing connec-
16 64 256 1024 4096

N tions in the network becomes more selective. In fact, for a
constantN, the number of connection in the M; model

FIG. 6. The distancel against network siz&\, for the models  decreases for high(see Table)L As a resultC, ,,q=(k)/N
Mz, M3, Ms, andM; as indicated in the figure. =2n/N? decreases in contrast with estima@that remains

almost constant.
among vertices follow a Poisson distribution. Therefore we
compared andC of M, with d andC of the random network
associated; it means the random network with the same num- IV. FINAL REMARKS
ber of vertices and connections. ] ) ]

The distance of a network is defined as the average dis- !N this work we propose a network model in which the
tance between all the two vertices of the network. The clushatural numbers are the vertices and the connections are
tering coefficient is a global parame®@r= = yc; /N which is  based on their decomposition by prime numbers. Using this
based on the local clustering coefficient For each vertek  criterion we develop a nonsparse netwogk)(~ <N) which
the respective; is defined as the normalized number of con-has a distance of the order of 2. If we consider that all the
nection amonyg its first neighbors. The param&eneasures prime numbers in the decomposition set a link the network
the average interconnection of the network. Using the exformed is similar to a random graph because the high num-
ample of social networks of acquaintancesmeasures how ber of connections implies a small clustering coefficient. If
much the friends of a persotvertexi) are friends among the criterion for establishing links becomes more selective,
them. For a major treatment on this topic see R2}. only prime numbers greater than 3, or 5, are used to estab-

The distance of the random network associateghq, is  lish links where the network has a large clustering coeffi-
estimated by simulation. We note that, because the graph igent.
not sparse, it is not valid thait<In(N). In fact, for non-sparse  \we perform data collapse on the data and verify that the
graphs the distance is almost alway$17]. Otherwise, the  networks studied have a degree distribution that is invariant
clustering coefficient of the random graph associaf&gdhq,  with the number of verticedl. The general view of the de-
is analytically estimatefP] and depends only on the number gree distribution is a funny discontinuous curve with pla-
of verticesN and the number of connections For the ran-  teaus of all sizes. These plateaus are generated by the fami-
dom graph the clustering coefficient G,ng=(k)/N. We |ies of numbers that share the same prime numbers in their
call d=d/d;;ng andC=C/C, 4 as the normalized distance decomposition.
and clustering coefficient. An important class of networks are the scale-free ones.

Figure 6 shows the distanckagainst the network sizZzd  This concept is mainly used to distinguish between networks
for the data of the model$1,, M3, M5, and M;. The that have exponential and power-law degree distributions. In
graphic is in log-linear form because of the large intervalthe exponential case most of the vertices have a typical con-
used inN. The data confirm the prevision for nonsparsenectivity inside a range defined by the exponent of the expo-

graphs that the distance is around 2. We estindater the ~ nential function. On the one side, a power-law case has con-
networksM,, M3z, Mg, andM; in the range 2<N=<2!2  nections of all orders; it does not have a set of vertices with

and find that 0.5:d<0.9. The general tendency is that 2 typical connectivity. The number netwoi, does not
slowly increases with\. In addition, | large in modelsM, have a smooth degree distribution because of the plateaus

implies smallerd. This last fact is expected since for large formed by the families of prime numbekg, therefore it is

) - not possible to fit the degree by a smooth curve. On the other
the connections of the network are more selective and 0r9854e due to families, , this network has vertices with all
nized. ' ’

_ orders of connectivity corresponding to all sizes of primes
The analysis o€ for M,, M3, Ms, andM; shows thatit  and their combinations. In this broad sense the netvrk

increases withN until N226 and stabilizes around a constant can be called a scale-free network.

value. In Table IIC for severaNN for the modelM 5 is shown; This work unfolds an alternative perspective in the study

the other model$/, follow a similar trend. of complex networks. Instead of search for real networks in
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